EM 1110-2-1100 (Part II)
30 Apr 02
H cosh[2π(z % d)/L]
cos θ & ρgz
p ' ρg
2 cosh(2πd/L)
(II-1-70)
3 πH 2 tanh(2πd/L] cosh[4π(z % d)/L] 1
% ρg
& cos 2θ
L sinh2(2πd/L
8
3
2
sinh (2πd/L)
πH 2 tanh(2πd/L)
1
4π(z % d)
ρg
&1
cosh
&
L sinh (2πd/L)
8
L
2
(b) The terms proportional to the wave height squared in the above equation represent corrections by the
second-order theory to the pressure from the linear wave theory. The third term is the steady component of
pressure that corresponds to time-independent terms mentioned earlier.
(c) A direct byproduct of the high-order Stokes expansion is that it provides means for comparing
different orders of resulting theories, all of which are approximations. Such comparison is useful to obtain
insight about the choice of a theory for a particular problem. Nonetheless, it should be kept in mind that
linear (or first-order) theory applies to a wave that is symmetrical about the SWL and has water particles that
move in closed orbits. On the other hand, Stokes' higher-order theories predict a wave form that is
asymmetrical about the SWL but still symmetrical about a vertical line through the crest and has water
particle orbits that are open (Figure II-1-10).
(4) Maximum wave steepness.
(a) A progressive gravity wave is physically limited in height by depth and wavelength. The upper limit
or breaking wave height in deep water is a function of the wavelength and, in shallow and transitional water,
is a function of both depth and wavelength.
(b) Stokes (1880) predicted theoretically that a wave would remain stable only if the water particle
velocity at the crest was less than the wave celerity or phase velocity. If the wave height were to become so
large that the water particle velocity at the crest exceeded the wave celerity, the wave would become unstable
and break. Stokes found that a wave having a crest angle less than 120 deg would break (angle between two
lines tangent to the surface profile at the wave crest). The possibility of the existence of a wave having a crest
angle equal to 120 deg is known (Lamb 1945). Michell (1893) found that in deep water the theoretical limit
for wave steepness is
H0
1
' 0.142 .
(II-1-71)
L0
7
max
Havelock (1918) confirmed Michell's finding.
(c) Miche (1944) gives the limiting steepness for waves traveling in depths less than L0/2 without a
change in form as
H0
H
2πd
2πd
tanh
(II-1-72)
' 0.142 tanh
'
L0
L
L
L
max
max
Water Wave Mechanics
II-1-35